
R. Meersman, Z. Tari, P. Herrero et al. (Eds.): OTM Workshops 2006, LNCS 4277, pp. 554 – 564, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Quantitative Evaluation of Systems with Security
Patterns Using a Fuzzy Approach

Spyros T. Halkidis, Alexander Chatzigeorgiou, and George Stephanides

Department of Applied Informatics, University of Macedonia
Egnatia 156, GR-54006, Thessaloniki, Greece

halkidis@java.uom.gr, {achat, steph}@uom.gr

Abstract. The importance of Software Security has been evident, since it has
been shown that most attacks to software systems are based on vulnerabilities
caused by software poorly designed and developed. Furthermore, it has been
discovered that it is desirable to embed security already at design phase.
Therefore, patterns aiming at enhancing the security of a software system,
called security patterns, have been suggested. The main target of this paper is to
propose a mathematical model, based on fuzzy set theory, in order to quantify
the security characteristics of systems using security patterns. In order to
achieve this we first determine experimentally to what extent specific security
patterns enhance several security aspects of systems. To determine this, we
have developed two systems, one without security patterns and one containing
them and have experimentally determined the level of the higher robustness to
attacks of the latter. The proposed mathematical model follows.

Keywords: Software Security, Security Patterns, Fuzzy Risk Analysis.

1 Introduction

The importance of software security has been evident since the discovery that most
attacks to real software systems are initiated by software poorly designed and
developed [34, 32, 15, 16]. Furthermore, it has been shown that the earlier we
incorporate security in a software system the better [34]. Therefore, in analogy to
design patterns [13], which aim at making software well structured and reusable,
Security Patterns [33, 4] have been proposed, targeting at imposing some level of
security to systems already at the design phase.

In this paper, we try to propose a mathematical model for the security of systems
using security patterns. To achieve this, we first investigate to what extent specific
security patterns reinforce several aspects of software systems security. To determine
this experimentally we have built two software systems, which are the
implementations of web applications, one without security patterns and one where
security patterns were added to the former. We studied all applications under known
categories of attacks to web applications [29]. To perform our analysis we have used
the AppScan Web Application Penetration Testing tool, and organized a contest to
study other approaches for evaluating software systems for vulnerabilities. We have
estimated experimentally to what extent the system using security patterns is more

 Quantitative Evaluation of Systems with Security Patterns Using a Fuzzy Approach 555

robust to attacks compared to the one that does not use them. Furthermore, initiated
by the findings, we propose expressions for the resistance to STRIDE attacks [16] for
the patterns examined. Finally, we use results from fuzzy reliability [7] and the
application of fault trees [6, 1], to examine the security properties of systems using
security patterns and illustrate the application of the related results to a system
properly using the security patterns examined.

The remainder of the paper is organized as follows. In Section 2 we briefly review
work on security patterns. Section 3 is a description of the systems under
examination. In Section 4 we describe the results of our evaluation. Section 5
proposes a mathematical model for systems using security patterns using fuzzy
numbers and fuzzy fault trees. Finally, in Section 6 we make some conclusions and
propose future research directions.

2 Security Patterns

Since it has been evident that it is desirable to incorporate security already at the
design level [34, 16], various efforts to propose security patterns, that serve this aim,
have been done.

Yoder and Barcalow were the first to propose security patterns [35] in 1997. Since
then, various security patterns were introduced. Patterns for enterprise applications
[27], patterns for authentication and authorization [11, 20], patterns for web
applications [18, 36], patterns for mobile java code [23], patterns for cryptographic
software [5] and patterns for agent systems [24]. Though, all these efforts did not
share some common terminology.

The first effort to provide a comprehensive review of existing security patterns was
done by the OpenGroup Security Forum [4]. In this work, security patterns are
divided into Available System Patterns, which are related to fault tolerance [25] and
Protected System Patterns, which aim at protecting resources.

In an earlier work [14] we have performed a qualitative evaluation of these security
patterns.

Recently, a summary of security patterns has appeared in the literature [33]. In this
text security patterns are divided into web tier security patterns, business tier security
patterns, security patterns for web services, security patterns for identity management
and security patterns for service provisioning. In this paper we focus on web tier
security patterns and business tier security patterns.

3 Description of the Systems Under Examination

In order to perform our security analysis, we have used two systems. Specifically, we
have developed a simple e-commerce application without security patterns, hereafter
denoted as “first” application, and a second application where security patterns were
added to it, hereafter denoted as “second” application.

The first application under consideration is a typical J2EE (Java 2 Enterprise
Edition, now referred to as Java EE) application with no security patterns. We have
chosen J2EE as a platform for both applications since the J2EE platform is widely

556 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

used in business applications and is useful from the security point of view [33, 3]. In
our systems we have used JBoss 4.0.3 as an application server that encompasses the
web and business tier, and MySQL 5.0 for the database tier.

The first system consists of 46 classes. It has 16 servlets and 7 EJBs. One EJB
works as a web service endpoint [26].

We have left on purpose on this system so-called “security holes” that attackers
can exploit.

First of all, several sources for SQL injection [29, 2, 31, 12] were included. An
SQL injection attack occurs when an attacker is able to insert a series of SQL
statements into a query that is formed by an application, by manipulating data input
that is not properly validated [2]. SQL injection attacks can cause unauthorized
viewing of tables, database table modification or even deletion of database tables.

Furthermore, several sources for cross-site scripting were included. Cross site
scripting [29, 10, 30, 17], also known as XSS, occurs in a web application when data
input in one page which are not properly validated, are shown in another page. In this
case, script code can be input in the former page that is consequently executed in the
latter. In this way it is easy to perform an Information Disclosure attack [16] for
example by using Javascript code that shows the cookie values of sensitive
information.

Additionally, several sources for HTTP Response Splitting [19], were included in
the application. HTTP Response Splitting attacks can occur when user data that were
not properly validated are included in the redirection URL of a redirection response,
or when data that were not properly validated are included in the cookie value or
name, when the response sets a cookie. In these cases, by manipulating http headers,
it is easy to create two responses instead of one where in the second response an XSS
attack can be performed. Variants of this attack include Web Site Defacement, Cross
User page defacement, Hijacking pages with user specific information and Browser
Cache Poisoning [19].

Furthermore, in the first application no SSL connection was used and therefore
sensitive information such as credentials and important information in cookies could
be eavesdropped.

Fig. 1. Block diagram of the second application under examination

 Quantitative Evaluation of Systems with Security Patterns Using a Fuzzy Approach 557

Finally, servlet member variables race conditions were included, which could be
exploited by a number of users acting simultaneously.

In the second application we have built, the sources for attacks were not removed,
but security patterns were used with the aim of protecting against them. The second
application consists of 62 classes. It has 17 Servlets and 9 EJBs where one EJB again
serves as an endpoint for the web service. The security patterns used in this system
are the Secure Proxy pattern, Login Tunnel variant [4], the Secure Pipe pattern, the
Secure Logger pattern, Secure Log Store Strategy, the Intercepting Validator pattern
and the Container Managed Security pattern [33]. In Figure 1 we show a block
diagram that consists of the main components of the second application with some of
the security patterns used. Solid arrows show the flow of information.

4 Evaluation of the Systems with Regard to Attacks

In order to evaluate the systems with regard to attacks, we have used Watchfire’s
AppScan web application penetration testing tool. Furthermore, we have initiated a
web application security contest, which was won by Benjamin Livshits from Stanford
University. Livshits used static analysis tools to find the security flaws which are
described in several papers [21, 22].

Both approaches found the major security flaws of the applications, meaning SQL
Injection and Cross Site Scripting vulnerabilities. However both approaches had
several false positives. AppScan for example found sources for buffer overflows,
while java was used and the static analysis approach found sources for SQL injection
in the second application, by examining the code for the EJBs, while proper input
validation was done at the Web Tier. Race conditions for servlet member variables
were found only by the static analysis approach. Several application errors of low
severity not found by the static approach, were found by AppScan (checking for
proper session variable values, that though not cause security risks). AppScan found
the unencrypted login request flaw in the first application that did not use SSL.
AppScan also found unencrypted SSL parameter flaws in the second application,
which are of low severity. HTTP response splitting attacks in the first application as
well as race conditions existing in the third application were found by neither of the
approaches.

Additionally, the security flaws found by both approaches, were fewer in the case
of the second application in comparison to the first one. The difference between the
number of flaws found for the first and the second application was much more
prominent in the set of high-risk flaws.

After careful analysis of the results we concluded that proper use of the security
patterns leads to remediation of all the security flaws, except flaws that are of minor
risk, like unencrypted SSL parameters (of course this flaw is of minor risk only when
the unencrypted parameters are not crucial like in our case). These flaws that remain
even after the use of security patterns, are due to the degrees of freedom left to the
programmer even after using them imposes some level of security. Furthermore,
current security patterns impose no rules for the use of servlet member variables and
therefore race conditions may remain in a system using security patterns.

558 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

The Intercepting Validator pattern, when used for all input, including session
variables, and variables that are not input by the user but still posted, protects from SQL
Injection, Cross-Site scripting, and HTTP Response Splitting attacks. It offers therefore
very high resistance to Tampering with Data and Information Disclosure Attacks [16].

The Secure Proxy pattern, Login Tunnel variant, has two levels of authentication in
order to protect from Spoofing Identity, Elevation of Privilege and Information
Disclosure attacks. Its resistance to related attacks can be estimated by considering it
to be the equivalent the protection of two guards [4] connected in a series. The
resistance of both of these patterns to attacks is dependent to the robustness of the
authentication mechanism to dictionary attacks. Recent studies [37, 28] have shown
that dictionary attacks, with a usual distribution of the complexity of the passwords
selected, succeed 15-20% of the times. The authentication mechanism of the
Protected System pattern can still be marked as of high security. All authentication
patterns and consequently these two patterns examined here should be resistant to
eavesdropping attacks to serve their purpose. Therefore, they should always be used
in combination with the Secure Pipe pattern that provides SSL encryption.

The Secure Pipe pattern offers protection from information disclosure attacks. The
programmer can still use unencrypted parameters in an SSL request, but usually,
when these parameters are not of crucial importance this kind of flaw is of minor risk.

The Container Managed Security Pattern implements an authorization mechanism.
It protects from Elevation of Privilege, Information Disclosure and partly from
Spoofing Identity attacks, since anyone who belongs to the Role allowed to access the
EJBs could do so.

Table 1. Resistance of the security patterns examined to STRIDE attacks

 S T R I D E

Intercepting
Validator

 very high very high

Guard of Secure
Proxy with
Secure Pipe

high high high

Container
Managed
Security

medium very high very high

Secure Logger very high

Finally, the Secure Logger pattern protects from tampering the log created.
The evaluation of these security patterns with respect to the STRIDE (Spoofing

Identity, Tampering with Data, Repudiation, Information Disclosure, Elevation of
Privilege) model [16] is summarized in Table 1. The irrelevant entries are left blank.

5 Fuzzy Mathematical Model for Systems Using Security Patterns

One of the targets in our research was to build a mathematical model for systems that
use security patterns, based on our findings for the level of security each pattern

 Quantitative Evaluation of Systems with Security Patterns Using a Fuzzy Approach 559

offers. The most appropriate models for our purpose seem to be risk analysis models
[1]. We have chosen to use a fuzzy risk analysis model because it is impossible to
determine security characteristics of software systems using exact numbers. As
Hoglund and McGraw [15] note, in software risk analysis exact numbers as
parameters work worse than having values such as high, medium and low. These
kinds of values can be termed as fuzzy.

Risk analysis techniques for estimating the security of systems have been proposed
earlier [1]. The differences in our approach are that we apply risk analysis already at
the design phase of a software system using a security pattern centric approach, that
we make use of the newer STRIDE model of attacks [16] and that we use fuzzy terms.

When performing risk analysis for a system, a common formula used by the risk
engineering community is the following [8]:

LECR = . (1)

where L is the likelihood of occurrence of a risky event, E the exposure of the system
to the event, C the consequence of the event and R the computed risk. Examining this
equation in comparison to the risk analysis performed by Hoglund and McGraw [16]
in our case the likelihood L is the likelihood of a successful attack, the exposure E is a
measure of how easy is to carry out the attack and C is the impact of the attack. As we
explained earlier we have chosen that the terms in our risk analysis model are fuzzy.

Table 2. Mapping of linguistic terms to generalized fuzzy numbers

Linguistic Term Generalized Fuzzy Number
absolutely-low (0.0, 0.0, 0.0, 0.0; 1.0)

very-low (0.0, 0.0, 0.02, 0.07; 1.0)
low (0.04, 0.1, 0.18, 0.23; 1.0)

fairly-low (0.17, 0.22, 0.36, 0.42; 1.0)
medium (0.32, 0.41, 0.58, 0.65; 1.0)

fairly-high (0.58, 0.63, 0.80, 0.86; 1.0)
high (0.72, 0.78, 0.92, 0.97; 1.0)

very-high (0.93, 0.98, 1.0, 1.0; 1.0)
absolutely-high (1.0, 1.0, 1.0, 1.0; 1.0)

The applicability of fuzzy techniques to security problems has already been

proposed [8] and the use of fault trees for security system design has also been
suggested [6, 1]. In this paper we perform an analysis of the security of systems using
security patterns, using results from fuzzy set theory [38] and fuzzy fault trees [7].
Specifically, we perform fuzzy risk analysis for a system that has properly added
security patterns to the initial system under examination.

Our analysis uses generalized fuzzy numbers [9] and the similarity metric proposed
by Chen and Chen [9]. We have chosen generalized fuzzy numbers instead of other
existing approaches because the similarity measure for generalized fuzzy numbers has
been proven to be robust in the cases where both crisp and fuzzy numbers are to be
compared [9].

We used the mapping from linguistic terms to generalized fuzzy numbers shown in
Table 2 adapted from [9]:

560 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

These fuzzy numbers (except absolutely-low and absolutely-high) are shown in
Figure 2.

Fig. 2. Fuzzy numbers that correspond to the linguistic terms used in our analysis

Table 3. Analysis of primary attack events for a system properly using security patterns

Primary Event Likelihood

of occurrence
Exposure Consequences Categories

of Attacks
Event 1. Dictionary attack to a

guard of Secure Proxy is
successful

low high very high S, E, I

Event 2. Variable value is used
unencrypted in SSL request

high very high low I

Event 3. Variable value is read
from wsdl file

medium very high low I

Event 4. Input validation is
bypassed

absolutely low high very high T, I

Event 5. Unauthorized access to
servlet member variables is
allowed by exploiting race

conditions

high low low I

We then identified the primary events for the fault trees and the categories of attacks

related to the STRIDE model [16] they belong to. A dictionary attack to the Secure
Proxy pattern is successful only if both guards are compromised and causes a
Spoofing Identity, Elevation of Privilege and Information Disclosure. An attack to a
guard of this pattern can be performed using automated tools and therefore the
exposure for this attack is high. The likelihood of such attack is low since the guard
has high resistance to dictionary attacks. If such an attack is successful the
consequences are very high. By performing a similar likelihood-exposure-
consequence analysis for all primary events we obtain Table 3.

The Tampering with data attack does not exist practically for this system, since the
only primary event that causes it has absolutely low likelihood of occurrence. The
Spoofing Identity and Elevation of Privilege attacks occur for the same primary event.

 Quantitative Evaluation of Systems with Security Patterns Using a Fuzzy Approach 561

The resulting fuzzy fault tree for Information Disclosure attacks is shown in
Figure 3. The fault tree for Spoofing Identity and Elevation of Privilege attacks can be
built using the same technique.

Fig. 3. Fault tree for Information Disclosure attacks

The methodology we use to derive the risk for the top event is outlined in the

following steps:

1) We first identify the values of likelihood, exposure and consequences for the
primary events.

2) We then perform the logical composition of values, according to rules for the
gates of fault trees, starting from the values of primary events and ending at the
computation of the risk for top event.

3) Finally we compare the risk for the top event computed in step 2, with the
values in Table 2 using the similarity metric from [9].

4) The linguistic term with the highest similarity is chosen as the result.

This is a typical fuzzy risk analysis approach [7] where the terms for the events
depend though on the security patterns used in the system examined. Furthermore, we
use in our analysis generalized fuzzy numbers adapted from [9] as well as the
similarity metric from [9].

Table 4. Summary of risks computed for different types of attacks for a system without security
patterns and a system properly using them

 Spoofing Tampering with
Data

Information
Disclosure

Elevation of
Privilege

System without
security patterns

fairly high fairly high high fairly high

System properly
using security

patterns

very low absolutely low low very low

562 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

After performing the necessary computations for the system properly using
security patterns we come to the result that the risk for the fault tree corresponding to
Spoofing and Elevation of Privilege attacks is very low and the risk for the fault tree
corresponding to Information Disclosure attacks is low. These trees correspond to the
system that properly uses security patterns. The risk for Tampering with data attacks
is zero (absolutely low).

On the contrary, for the system that does not employ security patterns, the risk
values according to the proposed model, for the same types of attacks are fairly high
for Spoofing Identity and Elevation of Privilege attacks, high for Information
Disclosure attacks and fairly high for Tampering with data attacks. Table 4
summarizes these results and quantifies the difference between the two systems.

The methodology described thus allows us to derive results about the total security
of systems employing security patterns, already at the design, in terms of fuzzy
linguistic variables.

7 Conclusions and Future Work

The results of the evaluation of the attacks as well as the fuzzy methodology used
show that systems that use security patterns properly are highly secure and robust to
attacks. This robustness to attacks has been also quantified in this work and a
mathematical model has been proposed. Future work includes the introduction of new
security patterns that solve the issues not addressed by existing ones and a software
tool that automates the security evaluation process we described in this paper.

Acknowledgements

We would like to thank the Web Application Security mailing list of SecurityFocus
and the comp.lang.java.security mailing list, for letting us organize a contest.
Furthermore, we would like to thank Benjamin Livshits, from Stanford University,
the winner of the contest and Watchfire Corporation for providing us an evaluation
license for AppScan.

References

1. Amoroso, E., Fundamentals of Computer Security Technology, Prentice Hall (1994)
2. Anley, C., Advanced SQL Injection in SQL Server Applications, NGSSoftware

whitepaper (2002)
3. Berry, C. A., Carnell, J., Juric, M.B., Kunnumpurath, M. M., Nashi, N. and Romanosky,

S., J2EE Design Patterns Applied, Wrox Press (2002)
4. Blakley, B., Heath, C. and Members of the Open Group Security Forum, Security Design

Patterns, Open Group Technical Guide (2004)
5. Braga, A., Rubira, C., and, Dahab R., Tropyc: A Pattern Language for Cryptographic

Software, in Proceedings of the 5th Conference on Pattern Languages of Programming
(PLoP ’98) (1998)

6. Brooke, P. J., and Paige, R. F., Fault Trees for Security System Design and Analysis,
Computers and Security, vol. 22, No. 3, pp. 256-264 (2003)

 Quantitative Evaluation of Systems with Security Patterns Using a Fuzzy Approach 563

7. Cai, K.-Y., Introduction to Fuzzy Reliability, Kluwer Academic Publishers (1996)
8. Cai, K.-Y., System Failure Engineering and Fuzzy Methodology, An Introductory

Overview, Fuzzy Sets and Systems, Vol. 83 pp. 113-133 (1996)
9. Chen, S.-J., and Chen, S.-M., Fuzzy Risk Analysis Based on Similarity Measures of

Generalized Fuzzy Numbers, IEEE Transactions on Fuzzy Sets and Systems, Vol. 11, No.
1 (2003)

10. Cgisecurity.com, Cross Site Scripting questions and answers,
http://www.cgisecurity.com/articles/xss-faq.shtml

11. Fernandez E., Metadata and authorization patterns,
http://www.cse.fau.edu/~ed/MetadataPatterns.pdf (2000)

12. Friedl, S., SQL Injection Attacks by Example, http://www.unixwiz.net/techtips/sql-
injection.html

13. Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns, Elements of
Reusable Object-Oriented Software, Addison Wesley (1995)

14. Halkidis, S. T., Chatzigeorgiou, A., and Stephanides, G., A Qualitative Evaluation of
Security Patterns, in Proceedings of the 6th International Conference on Information and
Communications Security (ICICS ’04) (2004)

15. Hoglund, G. and McGraw, G., Exploiting Software, How to Break Code, Addison Wesley
(2004)

16. Howard, M. and LeBlanc, D., Writing Secure Code, Microsoft Press (2002)
17. Hu, D., Preventing Cross-Site Scripting Vulnerability, SANS Institute whitepaper (2004).
18. Kienzle, D., and Elder, M., Security Patterns for Web Application Development, Univ. of

Virginia Technical Report (2002)
19. Klein, A., “Divide and Conquer”, HTTP Response Splitting, Web Cache Poisoning

Attacks and Related Topics, Sanctum whitepaper (2004)
20. Lee Brown, F., Di Vietri J., Diaz de Villegas G., Fernandez, E., The Authenticator Pattern,

in Proceedings of the 6th Conference on Pattern Languages of Programming (PLoP ’99)
(1999)

21. Livshits B., and Lam, M. S., In Proceedings of the 14th USENIX Security Symposium
(2005)

22. Livshits, B., and Lam, M. S., Finding Security Vulnerabilities in Java Applications with
Static Analysis, Stanford University Technical Report (2005)

23. Mahmoud, Q., Security Policy: A Design Pattern for Mobile Java Code, in Proceedings of
the 7th Conference on Pattern Languages of Programming (PLoP ’00) (2000)

24. Mouratidis, H., Giorgini, P., and Schumacher, M., Security Patterns for Agent Systems, in
Proceedings of the Eighth European Conference on Pattern Languages of Programs
(EuroPLoP ’03) (2003)

25. Pullum, L. L., Software Fault Tolerance Techniques and Implementation, Artech House
Publishers (2001)

26. Roman, E., Sriganesh, R. P. and Brose G., Mastering Enterprise JavaBeans, Third Edition,
Wiley Publishing (2005)

27. Romanosky, S., Enterprise Security Patterns,
http://www.romanosky.net/papers/EnterpriseSecurityPatterns.pdf (2002)

28. Ross, B., Jackson, C., Miyake, N., Boneh, D., and Mitchell, J.C., Stronger Password
Authentication Using Browser Extensions, In Proceedings of the 14th USENIX Security
Symposium (2005)

29. Scambray, J., and Shema, M., Hacking Exposed Web Applications, McGraw-Hill (2002)
30. Spett, K., Cross-Site Scripting, Are your web applications vulnerable?, SPI Labs

whitepaper

564 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

31. SPI Labs, SQL Injection, Are Your Web Applications Vulnerable?, SPI Labs whitepaper.
32. Spinnelis, D., Code Quality : The Open Source Perspective, Addison Wesley (2006)
33. Steel, C., Nagappan R., and Lai, R., Core Security Patterns, Best Practices and Strategies

for J2EE, Web Services, and Identity Management, Prentice Hall (2006)
34. Viega, J., and McGraw, G., Building Secure Software, How to Avoid Security Problems

the Right Way, Addison Wesley (2002)
35. Yoder, J., and, Barcalow, J., Architectural Patterns for enabling application security, in

Proceedings of the 4th Conference on Pattern Languages of Programming (PLoP ’97)
(1997)

36. Weiss, M., Patterns for Web Applications, in Proceedings of the 10th Conference on
Pattern Languages of Programming (PLoP ’03) (2003)

37. Wu, T., A Real-World Analysis of Kerberos Password Security, In Proceedings of the
1999 Network and Distributed System Symposium (1999)

38. Zimmerman, H.-J., Fuzzy Set Theory and its Applications, Third Edition, Kluwer
Academic Publishers (1996)

	Introduction
	Security Patterns
	Description of the Systems Under Examination
	Evaluation of the Systems with Regard to Attacks
	Fuzzy Mathematical Model for Systems Using Security Patterns
	Conclusions and Future Work
	References

